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Abstract—As global weather patterns increase in intensity
alongside an increasing demand for seafood, proper manage-
ment is essential in maintaining healthy fisheries and aquatic
ecosystems. Properly assessing, interpreting, and maintaining
population dynamics is vital for managing ecosystem dynamics.
Specifically, this report analyzes the population dynamics of
a large freshwater ecosystem composed of native salmon and
whitefish as well as invasive lake trout. The lake trout and
salmon compete to prey on the whitefish, and recreational and
commercial fishermen harvest all three species. The mathematical
model has its foundation in the Lotka-Volterra predator-prey
model, while the control mechanism is the harvest of each
species. The objective is to maintain robust, healthy populations
of salmon and whitefish while minimizing the impact of lake
trout. Through the use of MATLAB’s Control Design Toolbox,
the model indicated that managing the fishing and harvest of a
system could lead to stable ecosystem dynamics.

I. INTRODUCTION

Among an increasing intensity of environmental factors
contributing to aquatic ecosystem degradation, consumption
demands for seafood are growing [5]. To project population
dynamics of aquatic species and prevent the overharvesting
of these resources, proper models and analysis are essential.
Regulations are required to ensure sustainable management
practices through correct interpretation of such models. [1].
Aquaculture, commercial fishing, and recreational fishing all
impact fish populations, in addition to adverse environmental
impacts such as coral bleaching, hydroelectric dam construc-
tion, and pollution [5].

Biologists are responsible for developing dynamic models
for analyzing aquatic ecosystems on local to global scales
[7]. Population dynamics in fish species are heavily depen-
dent on ecosystems and fish life cycles. A coho salmon
that starts life in an inland Alaska stream travels to the
ocean to mature, then returns to the same stream to spawn
three years later encounters different environmental factors
than an aquaculture-raised tilapia [1]. Likewise, a coastal
migration zone provides different ecosystem dynamics than a
geographically isolated alpine lake. Fisheries biologists must
determine how to weigh the parsimony versus fidelity of their
dynamical system. Parsimony involves simplifying models
to make them easier to understand and more adaptable to
changing environmental conditions by consolidating system
impacts. It seeks to minimize error by reducing complexity.
Fidelity intends to replicate the actual conditions with as
few approximations as possible to model the real world. An
ecosystem dynamics system with high fidelity may consider

more factors like weather, inter-species dynamics, and human
influence.

With this context in mind, our project expands upon this
dynamic modeling endeavor to dissect the intricate interplay
within a coldwater ecosystem, home to salmon, whitefish, and
an invasive species, lake trout. This ecosystem is riddled with
predator-prey interactions, where both salmon and lake trout
prey upon the whitefish—a cornerstone species crucial for the
ecosystem’s balance and human consumption [6]. At the helm
of ecosystem management stands the external control input:
fish harvesting quotas, pivotal in steering sustainable fishing
practices.

In this paper, we systematically explore control aspects in
a coldwater ecosystem’s dynamics. We start by analyzing the
control problem, gradually moving from a broad overview to
specific details while balancing simplicity and accuracy. Using
an ODE model in Matlab, we examine the system’s dynamics,
equilibrium points, and behavior under different conditions.
Linearization is employed to understand system performance
and limitations.

The paper then focuses on designing a feedback control
mechanism, considering various controllers’ impact on distur-
bance rejection and measurement noise. It analyzes closed-
loop system characteristics, including transfer functions and
stability under different control gains. Furthermore, it delves
into PID control design, extensively evaluating system per-
formance, stability, and response under varying parameters.
It also details the design of a tailored feedback control
mechanism to meet specific performance criteria.

The overarching objective of our modeling endeavor is to
achieve stability within this complex ecosystem. We aim to
foster sustainable populations of salmon and whitefish while
mitigating the detrimental effects of lake trout predation.
Achieving this equilibrium not only facilitates responsible
recreational fishing but also seeks to alleviate harvesting
strains on these populations.

II. SYSTEM MODELING

Our model will consider natural predator-prey interactions
between the salmon and whitefish and the impact of an
invasive species: lake trout. The salmon and lake trout both
prey on the whitefish. The external control input on the system
will be fish harvesting quotas to help manage sustainable
fishing practices. The output will be the populations of all
three species. Ideally, our coldwater ecosystem will reach
stable populations of salmon and whitefish while minimizing



Parameter Value
Jw Growth rate of the whitefish
Js Growth rate of the salmon
a1 Growth rate of the lake trout
dw Natural death rate of the whitefish
ds Natural death rate of the salmon
d; Natural death rate of the lake trout
fs Feeding constant of the salmon
fi Feeding constant of the lake trout
K Carrying capacity of the whitefish

TABLE I: Parameters used in system model

the negative impact of lakefish predation. It will facilitate
responsible recreational fishing and will be able to stabilize
harvesting strains on the population. To ensure fidelity, we
will include the specific factors that modulate fish harvesting
intensity, which we can eventually adapt to model seasonal
patterns, including weather and fish spawning. We will have
three states: the populations of all three species. To ensure
parsimony, we will structure our dynamical system around
widely-accepted predator-prey system models [2], and con-
sider the system isolated with only three species.

A. System Model

We developed a model to predict the future population
dynamics of each species using the past and present output
of the populations. The model developed aims to predict the
population dynamics of species in a coldwater ecosystem by
considering their interactions and control measures.

The system’s control mechanisms regulate each species’
population. Salmon and lake trout populations grow propor-
tionally to their interactions with whitefish, modulated by
growth coefficients g and g; respectively. Both predators face
death rates (d for salmon and d; for lake trout) reducing their
population growth. Whitefish population change is boosted
by a growth rate g,, towards a carrying capacity K,,, while
their population decreases due to interactions with the predator
species.

The system model is described through differential equa-
tions, defining the rates of change for whitefish (W (t)),
salmon (S(¢)), and lake trout (L(t)) populations. These equa-
tions involve growth, death rates, and interactions among the
species. The model without external input can be represented
as follows:

Our system model is as follows:

W(t) : Whitefish

« State: Current fish populations S(t) : Salmon

L(t) : LakeTrout

W(t)

« Output: Fish populations | S(t)
L(t)

We can then write our system as a system of differential
equations:
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However, there is an external input of fish harvesting. This
rate depends on various factors such as regulations, fishing
efforts, environmental conditions, or management policies.
It could be constant over time vary seasonally, or respond
to the population size itself (e.g., harvesting proportional
to population size). Hence in a bid to maintain parsimony
by simplifying our system, we sacrifice some degrees of
accuracy. The harvest rate can be represented as follows:

Hy(t)

Harvest of each species H(t) = | Hs(t)

The system becomes:

dvgt(t) = (guw — duw)W (t) (1 - K. > — fsS(t) = fiL(t) — Hu(t)
d

The control input (u) signifies the interventions or ad-
justments biologists can make, specifically monitoring and
managing the fish populations’ harvest.

B. Standard State-Space Form

The system can be represented in standard state-space
form, collapsing the states into a vector z and expressing the
differential equations in terms of x1, x2, and x3, corresponding
to whitefish, salmon, and lake trout populations respectively.
The state-space model reflects the system’s dynamics and
control input (u), which denotes the harvest of each species.
The three states represent the populations of the species, while
the output mirrors the input as a means to monitor and adjust
harvest regulations for desired populations.

Our system model is as follows:

o Control Input u(t) : Harvest of each species

Where «, B,’y are functions that relate the input to the
Harvesting. These rely on season, weather, fish spawning
activity, harvest intensity, consumer demand, and so on.



However, for simplicity, we set them to « = =~ = 1.

o State x(t) : Current fish populations

W(t)
z=| S(t)
L(t)

e Output y(t) : Fish populations

W (t)
y=| S
L(t)

We can express the system’s evolution by incorporating the
harvesting rates H (t) into the differential equations using the
control input u(t). We can then write our system as a system
of differential equations. Collapsing the states into the vector
x, we have:
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The model can then be written in standard form as:
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The above represents our state-space model wherein the
control input reflects the interventions biologists can imple-
ment within the system—specifically, the monitoring and man-
agement of fish population harvests. This model encapsulates
three primary states: the salmon population, the whitefish
population, and the lake trout population. Remarkably, the
output mirrors the input, underlining the expectation that
biologists can observe population variations pre- and post-
harvest, and then adapt harvest regulations to achieve desired
population levels.

It’s essential to note the model’s simplification, which
considers only three interacting species while overlooking
external factors such as weather impacts, potential shifts in
death rates corresponding to different life cycle stages, or
the influence of recreational fishing practices on population
dynamics. Moreover, this model assumes direct predation
as the sole factor influencing population growth or decline.
Furthermore, constant death rates are assumed. Notably, the
harvest rates do not account for the impact of recreational
catch-and-release fishing, which, while intended to return fish
safely to the ecosystem unharmed, may affect the population
dynamics.

Parameter Value

Guw 1.5 (whitefish per day) [4]
Js 1.25 (salmon per day) [4]
a1 1.29 (lake trout per day) [12]
dw 0.6 (whitefish per day) [6]
ds 0.83 (salmon per day) [4]
d; 0.6 (lake trout per day) [12]
Ky 7,740,000 (whitefish) [6]
fs 0.5 (success rate) [6]

11 0.7 (success rate) [6]

TABLE II: List of plausible parameter values for the given system

C. Plausible parameter values

In developing our model, we selected parameters by drawing
from scientific papers and available research. These param-
eters served as the backbone of our model, allowing us
to simulate behaviors closely resembling those observed in
natural systems. By anchoring our model in empirical data
and established scientific knowledge, we aimed to create
a robust foundation mirroring real-world phenomena. This
approach not only bolstered the accuracy of our model but
also empowered us to predict and test scenarios effectively.
Furthermore, validation against empirical observations rein-
forced the reliability of our model, providing deeper insights
into the complexities of the systems we studied.

D. Simulation and Analysis of Dynamic Behavior (u = 0)

To comprehend the nuanced behavior within our model,
we aim to simulate specific points of interest. This targeted
approach allows us to explore scenarios that highlight critical
dynamics in the system, including extreme cases like the
absence of a particular fish species. The following starting
points represent instances of particular interest within our
model:

1) Staring point 1: The dynamic behavior of all fish
present at a random state
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Fig. 1: Using x,1 as initial value



2) Starting point 2: The dynamic behavior in the absence
of whitefish
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Fig. 2: Simulating dynamic behavior with x,2 as initial value

3) Starting point 3: The dynamic behavior of whitefish
and trout in the absence of the salmon
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Fig. 3: Simulating dynamic behavior with x,3 as initial value

4) Starting point 4: The dynamic behavior of whitefish
and salmon in the absence of the salmon
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5) Starting point 5: The dynamic behavior of all fish at zero
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Fig. 4: Simulating dynamic behavior with x,4 as initial value
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Fig. 5: Simulating dynamic behavior with x,5 as initial value

6) Starting point 6: The dynamic behavior of whitefish in
the absence of predators.
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Fig. 6: Simulating dynamic behavior with x,¢ as initial value

In scenarios where predators were absent from the system,
the Whitefish population exhibited robust growth, following
a logistic curve until it reached a carrying capacity dictated
by K. This aligns with expectations, indicating that in the
absence of predation, prey populations can grow exponentially
until environmental limits are reached.

Conversely, when the whitefish population was initialized
at zero while the predator populations maintained non-zero
values, the model predicted an exponential decline in the



predator populations. Devoid of a prey base, the predators’
populations declined steadily over time.

Furthermore, initializing any population at zero resulted in
that population remaining at zero throughout the simulation.
Interestingly, when whitefish was absent while the predator
populations exponentially decreased to zero, the model dis-
played signs of instability. This instability suggests a disrup-
tion in the ecological balance, potentially leading to erratic
behaviors in the predator populations.

Additionally, when one predator population was initialized
at zero while the other predator and prey populations started
non-zero, the model exhibited typical predator-prey dynamics
between the remaining predator and prey populations. This
behavior resembled the expected interactions seen in simpler
one-predator one-prey systems.

The simulations unveiled distinctive population dynamics
contingent upon different initial conditions. The absence or
presence of specific populations had discernible impacts on
the model’s trajectories, showcasing the intricate interdepen-
dencies inherent in predator-prey ecosystems.

Further investigations could delve deeper into understanding
the thresholds or conditions leading to instability in the model.
Exploring these factors may provide deeper insights into the
stability and resilience of predator-prey relationships within
ecosystems.

E. Impact of Parameter Changes on Predator-Prey Dynamics

The predator-prey model examines the interactions between
Whitefish (prey), Salmon, and Lake Trout (predators). This
report explores how altering specific parameters within the
model influences the behaviors of these populations.

Parameter Modifications and Expected Behaviors:

Growth Rate of Prey (Whitefish): Changing the growth
rate (g,) of Whitefish will directly impact its population
dynamics. An increase in g,, would likely result in a more
rapid rise in the Whitefish population, potentially causing
accelerated fluctuations in predator populations. Conversely,
decreasing g,, would slow down Whitefish population growth,
potentially leading to delayed or subdued oscillations among
predators.

Growth Rates of Predators (Salmon and Lake Trout):
Modifying the growth rates (gs and g;) of predators can
significantly influence predator-prey dynamics. Higher g5 or
g; could intensify predator behavior, causing quicker depletion
of Whitefish populations and more erratic oscillations among
all populations. Conversely, reducing gs or g; might slow the
decline of Whitefish populations, resulting in smoother and
more stable predator-prey dynamics.

Death Rates of Predators: The death rates (ds and d;) of
predators play a crucial role in population control. Elevated
death rates could decrease predator populations, leading to a
slower decline in Whitefish populations and increased stability.
Conversely, lower death rates might intensify the impact on
Whitefish populations, potentially causing more pronounced
fluctuation.

Carrying Capacity of Whitefish (/,): Adjusting the
carrying capacity (K,,) influences the maximum Whitefish
population size before leveling off. Increasing K,, might
sustain higher Whitefish populations, leading to more stable
predator populations. Conversely, reducing K, could result in
quicker stabilization at lower levels, potentially causing earlier
collapses or more frequent oscillations in predator populations.

Alterations in specific parameters within the predator-prey
model distinctly influence population behaviors. Understand-
ing the impacts of these parameter changes provides in-
sights into the delicate balance and dynamics of predator-prey
ecosystems.

F. Simulation and Analysis of Dynamic Behavior with input(u,)

This section investigates the impact of harvesting rates on
the population dynamics within this ecosystem.
The dynamic behavior of all fish present at a random state
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Fig. 7: Using x,: as initial value

Simulation Results: The simulation was conducted for a
period of 30 years, considering two scenarios:

With Harvesting:

The model was simulated with harvesting rates for Whitefish,
Salmon, and Lake Trout (W, S, L) at rates of 100,000, 50,000,
and 30,000, respectively. The population dynamics depicted
distinct behaviors, showing stability point affected by the
harvesting pressure on each species. Whitefish populations
experienced a more pronounced decline, impacting the
predator populations.

Without Harvesting:

In the absence of harvesting (setting the rates to zero), the
population dynamics showed stable behaviors.

The graph illustrates the population dynamics of W, S, and L
with and without harvesting on the same axis. The presence of



harvesting resulted in a smaller stable population, particularly
noticeable in salmon populations.

III. LINEARIZATION AND STABILITY
A. Equilibrium Points

To determine the equilibrium point(s) under the assumption
of zero input (v = 0), the first step involves setting all-time
derivatives to zero to find the equilibrium values W*, S*,
and L*. This process entails solving the system of equations
resulting from setting the derivatives to zero, as follows:
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Solving this system of equations yields the equilibrium
points (z7, x5, x3), and in this case, six such equilibrium
points are obtained. These points represent stable or steady-
state values where the rates of change of the variables are
zero, given no external inputs (v = 0). Determining these
equilibrium points provides valuable insights into the behavior
of the system in the absence of external influences or inputs.

The calculated equilibrium points are as follows:

0 0 0
7740000 0 0

0 0 0
6295199 2115187 0

1 0 1
4520000 0 2417675

2 1 1

13075198 1033267 1644874 |

Our model aims to focus on the stability of all three fish
species, while minimizing the impact of lake trout. Therefore,
the fourth equilibrium point represents the ideal ecosystem
dynamics in the absence of any historical human intervention.
However, in the absence of the control input, harvest, nonzero
populations of all three species are expected to be nonzero. In
other words, it is assumed that lake trout have already been
introduced, whether naively, unintentionally, or otherwise.
Resultingly, the lake trout have established a viable, if not
dominant, population. This necessitates the exclusion of trivial
solutions where any individual fish species reaches zero or
its carrying capacity while others diminish. Thus, a singular
equilibrium point of particular interest is one where all three
fish species coexist with non-zero, non-maximal populations:

3075198
1033267
1644874

This equilibrium point corresponds to:

*
r =

3075198
1033267
1644874

*

y%

This equilibrium point signifies a state where whitefish,
salmon, and lake trout populations stably coexist without
reaching their maximum capacities or extinction. It represents
a balanced ecosystem with sustainable populations of all three
fish species.

B. Linearization Around Equilibrium

Linearization is a vital method used to study system be-
havior around equilibrium points, offering insights into lo-
cal stability. In our analysis of the predator-prey ecosystem,
linearization is performed around the previously identified
equilibrium point 2* ~ (3075198, 1033267, 1644874).

This process involves defining perturbations from the equi-
librium: (x —z*) = & and (u — u*) = @, enabling us to refor-
mulate the differential equations accordingly. The linearized
system can be represented as:

& = A% + Bu
§=Ct

Linearization aids in analyzing local stability and behavior
around an equilibrium point. The Jacobian matrix J(z) at the
equilibrium point, often denoted as A in the linearized state,
encapsulates the system’s behavior near stability.

The general Jacobian matrix is given by:

9 _ = _1 _

10 ~ 4300000 2 10
__5z3 21 _ _ 5wy 0
4(m1+1)2 50 2(m1+1)

12923 0 69 129z
100(z1+1)2 100 ~ 50(z1+1)

This matrix sheds light on the linearized behavior at the
equilibrium point at the equilibrium point z*, which dictates
the local dynamics:

0.1848 —0.5000 —0.7000
0.1411 —0.4200 0
0.3691 0 —0.6900

Additionally, within this linearized predator-prey ecosystem
model, the input matrix B and output matrix C' are defined as
follows:

The input matrix B represents external influences on the
rates of change in state variables. In our ecosystem model, B
can be expressed as:

This signifies that external inputs predominantly impact the
dynamics of the lake trout population (z3) from its equilibrium
value.

The output matrix C establishes relationships between state
variables and observable outputs in the ecosystem:

0
C= 0
1

OO =
o = O



This matrix indicates direct relationships between observ-
able outputs and population sizes of whitefish (z1), salmon
(x2), and lake trout (x3). Linearization enables us to exam-
ine disturbances’ impacts on the predator-prey ecosystem’s
stability near equilibrium, providing valuable insights into its
dynamic behavior.

C. Evaluating the Stability of the Linearized System
The eigenvalues of the Jacobian matrix are:

—0.2062 + 0.3995¢
—0.2062 — 0.3995¢
—0.5128

A~

Analyzing these eigenvalues allows us to assess the stability
of the system’s equilibrium point. All real values of the
eigenvalues are negative therefore when no input is applied,
the system’s equilibrium point is determined to be stable.

This analysis suggests that perturbations around this equi-
librium point may not lead to instability in the system.

IV. SIMULATION/DYNAMIC BEHAVIOR AROUND z*

To assess the dynamic behavior around our equilibrium
point of interest, we conducted an ODE simulation with
initial conditions slightly above and below the equilibrium
point.
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Initiating the system with initial conditions both above and
below the equilibrium point results in anticipated stability, as
depicted in the following graph:
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Fig. 8: Simulation with both initial conditions x,; and >

The graph illustrates the stable responses from both sets of
initial conditions, showing inimization of deviations from the
equilibrium point over time.

V. STATE FEEDBACK CONTROL
A. Control Objective

The objective of this project is to provide mathematical
models that help fishery biologists manage ecosystems. To that
end, our control objective is to drive our three state model
to desired population sizes of the three species. To do so,
fishing harvests will be moderated. This will allow recreational
and commercial fishermen to harvest fish while maintaining
sustainable ecological standards.

Our control objective is to set regulations, or limits, on the
harvest of each species. It does not account for the fishability
of each species. For example, salmon may be commercially
harvested most consistently outside of their autumn spawning
season with gill nets in lakes, while recreational harvest
prevails in river ecosystems during the spawning season.
Similarly, each species presents different challenges for harvest
beyond simply population density. For example, whitefish
remain in schools, while lake trout are primarily solitary. To
simplify our model, our controller will establish the optimal
harvest goals to drive out state to the desired population sizes.

Another objective is to achieve effective fish population con-
trol while safeguarding the ecological stability of the system.
To this end, the chosen eigenvalues and control parameters
need to ensure these aspects:

o Preserving System Stability: This element safeguards
against instability within the system. Ensuring that the
system remains stable under such control inputs is im-
portant.

o Controlled Response Without Overshooting: In an
ecosystem, overshooting could have adverse ecological
consequences. Therefore, our control system must re-
spond with minimal overshoot, reducing the potential
ecological impact.

o Gradual Increase for Ecological Harmony: Recognizing
the delicate nature of ecosystems, we have prioritized a
gradual increase in the system’s response. This gradual
approach is instrumental in preserving ecological balance.
It allows the control system to adapt harmoniously to
changes, ensuring that the objectives of fish population
control are met without imposing abrupt and disruptive
changes to the ecosystem.

B. Reachability

We first need to determine the reachability of the system
based on the given parameters and variables. If the system
is reachable, it implies the capability to access any point
within the state space through specific inputs. Understanding
the system’s reachability is pivotal for identifying an effective
control signal [14].

To establish reachability, we calculate the reachability ma-
trix (W,.), given by:

W, = [B, AB, A*B]

Using the linearized system derived in Section III-A, the
reachability matrix can be computed at the equilibrium point
of interest:



This matrix signifies the influence of the reference input on

) 3075198 the control system’s behavior. It determines how the control
a” &~ | 1033267 input responds to changes in the reference values, assisting in
1644874 achieving specific performance objectives.
—1 0 0 —0.1848 0.5 0.7 0.2947 —0.1176 —0.3536 Matrix A = (A - BK):
WT = |: 0 -1 0 —0.1411 0.4200 0 0.0332 —0.1058 0.0988 :|
0 0 -1 —0.3691 0 0.6900 0.1864 0.1845 —0.2178 _3 _1.5 0
The computed reachability matrix above exhibits full row 1.5 —3 0
rank, indicating rank(W,.) = 3. Hence, our system is reach- 0 0 -9

able.

C. Designing Basic Closed-loop Controller

The next step is to design a closed-loop controller for our
linearized system. In the context of this system, the control
input u(¢) can be defined as:

u(t)=Kae+kr-r (1)

where K represents a vector of controller gains with compo-
nents [kw, ks, k], and r denotes the reference value.

With this controller, the state of our system, represented by
the vector z, is influenced by both the control input and the
reference value. The state variables may encompass various
parameters or variables describing the system’s behavior. This
controller facilitates the regulation and stabilization of the
system by adjusting the control input based on the current
state and the desired reference value.

The constant gain kr multiplies the reference value r,
allowing adjustment of the reference value’s impact on the
control input. Essentially, it determines the extent to which
the controller responds to changes in the reference value. In
our case, we would like to control the population of all our
fish populations hence kr is a 3 x 3 matrix

The dynamics of the system can be expressed as:

2 =Ax— B(Kx+kr-r)=(A— BK)x+ Bkr-r

where A is the system’s state matrix, B represents the control
input matrix, K is the controller gain matrix, r is the reference
value, and kr is the constant gain influencing the reference
input.

Making our desired eigenvalues to be:

p=[-2,—3+ 1.5¢,—3 — 1.5¢]
we use the MATLAB function place to evaluate the feed-

back gain matrix.
The feedback gain matrix, denoted as K, is given by:

-3.1768 -1 0.7
1.3655 —2.59 0
—0.3691 0 —-1.31

This matrix is utilized in the closed-loop control system to
regulate and stabilize the state variables of the system. It
influences the system’s response based on the current state
and the reference input.

Reference Gain Kr: The reference gain matrix, denoted
as kr, is calculated by K, = (=C' - (A— B-K)™'-B) " It
is represented as:

-3 —-15 0
1.5 -3 0
0 0 -2

This modified state matrix, derived from the original system
matrix, reflects the impact of the controller gains on the
system’s dynamic behavior.

Matrix B = Bkr:

3 1.5 0
-15 3 0
0 0 2

This matrix signifies the relationship between the control input
and the reference input after the application of the control
gains.

Matrix C:

S O =
o = O
—_ O O

D. Simulation and Analysis of the Dynamics of the Closed-
Loop System

To understand the behavior of our closed-loop control
system, we conducted an analysis using MATLAB’s built-
in capabilities, specifically the ‘Isim‘ and ‘ss‘ function. This
analysis utilized the ‘step‘ function, a versatile tool designed
for exploring and visualizing system dynamics.

In the following code snippet, A denotes the system’s state
matrix, B represents the control input matrix, K denotes the
controller gain matrix, C' stands for the output matrix, and D
represents the feedforward matrix (which is 0 in our model).
The ‘step® function played a pivotal role in evaluating our
control system’s response to a step change in the reference
1nput.

sys = ss(A-B *K, B *Kr, C, 0);
[y, t, x] = Isim(sys, u, t);

The step response analysis yielded crucial insights into both
the transient and steady-state characteristics of our closed-loop
system. This assessment enabled us to gauge the system’s
performance against predefined objectives and facilitated in-
formed adjustments to meet our control goals.

Informed decision-making involves evaluating the step re-
sponse of the system across various p-values, starting with our
pre-selected p-value from the preceding section. Throughout
this section, we simulated the step response for four distinct
p-values, including the previously chosen one, while adjusting
their values to identify a p-value that aligns effectively with
our system’s behavior.

The p-value structure is as follows:

p=|c,a+ bi,a — bi]



1) p=[-2,—-3+1.5i,—3 — 1.5

Feedback Gain Matrix K:

-3.1768 -1 0.7
1.3655 —2.59 0
—0.3691 0 —1.31

Reference Gain Kr:

-3 —-15 0
15 -3 0
0 0 —2

The step response is shown below:
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Fig. 9: Step response when p = p1

2) p=[-2,—10+ 1.5i,—10 — 1.5i]

Feedback Gain Matrix K:

—-10.1768 -1 0.7
1.3656  —9.59 0

—0.3691 0 —1.31
Reference Gain Kr:
—-10 —-15 0
1.5 =10 O
0 0 -2

The step response is shown below:

3) p=[-1,-3+ 1.5i,—3 — 1.5

Feedback Gain Matrix K:

-3.1768 -1 0.7
1.3655 —2.59 0

—0.3691 0 —-0.31
Reference Gain Kr:
-3 =15 0
1.5 -3 0
0 0 -1
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Fig. 10: Step response when p = p;
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Fig. 11: Step response when p = p;

The step response is shown below:

4) p=[-2

,—3+ 5i, —3 — 5i]

Feedback Gain Matrix K:

—-3.1768 —4.5 0.7
4.8655 —2.59 0

Reference Gain Kr:

—0.3691 0 —-1.31
-3 -5 0
5 =3 0
0 0 -2

The step response is shown below:

E. Final Controller based on Closed-Loop System Dynamics

Selecting an appropriate p value for the step response anal-
ysis holds significant importance, especially considering the

sensitivity of

the environment or system under consideration.
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Fig. 12: Step response when p = pa

The overshooting observed in the step response graph can have
practical implications, particularly in environments sensitive to
abrupt changes or fluctuations.

In our analysis, the choice of p = [—2,—10 + 1.5¢, —10 —
1.54] was made after careful consideration of the system’s
response characteristics. This selection aimed to strike a
balance between achieving system stability and minimizing
overshooting tendencies. The complex-conjugate nature of the
chosen eigenvalues —10 + 1.5¢ and —10 — 1.5¢ contributes to
a damped response, which aids in curbing overshooting while
ensuring a controlled and stable system response.

This specific p value aligns well with our system’s behavior
and objectives. By evaluating the step response corresponding
to this p-value, we observed a response that meets our criteria,
demonstrating minimal overshooting while effectively regulat-
ing the system towards the desired reference input.

Drawing from our analysis and observations from the
previous section, we have successfully established eigenval-
ues that align with the anticipated general behavior of our
control system and our control objectives. These carefully
chosen eigenvalues are instrumental in ensuring the stability
and performance of the system, striking a delicate balance
between control input, which represents fish harvesting, and
the system’s response.

The step response is shown below:

VI. OUTPUT FEEDBACK CONTROL
A. Feedback Control Objectives with Luenberger Observer

Our feedback control objectives, utilizing a Luenberger
observer with measurements of all outputs, are important
because, with the observer, we can predict hence control the
real-life behavior of our system more accurately.

One of the most important objectives is that we would like to
maintain state estimation for informed control, regulate species
populations to desired levels, and optimize harvest control
based on estimated states. Similar to our control objective,
it is important to maintain ecosystem stability and ecological

Step Responses of Outputs
Step Response - Output y1

i
Step Response - Output y2

ime
Step Response - Output y3

Fig. 13: Step response of our final closed loop

impact. Preservation of our system stability and minimization
of ecological impact through controlled responses. Hence, we
will choose eigenvalues that attain this goal. The observer
must have gradual adaptation to changing conditions, ensuring
robust control in the face of uncertainties, and achieving
convergence for reliable state estimates. Also, we must be able
to optimize control inputs to meet population targets and use
of adaptive control strategies based on observed dynamics.

These objectives collectively enable us to achieve effective
fish population control while safeguarding the ecological sta-
bility of the system.

B. Observability

The output of the system is the population of all three fish
species. Thus, the C Matrix is:

100
01 0
0 0 1

To certify if the information given in y(¢) and u(¢) are enough
to determine the state x(¢) for any value of ¢, the observability
of the system is calculated using the observability matrix W,
where

W, = [C,CA,CA2]T

If rank(W,) = 3, then the system is observable for the
given input and output.

Inputing the C' and A matrices into the above equation
yields

[ 1 0 0

0 1 0

0 0 1
0.1848  —0.5000 —0.7000

W, = | 0.1411  —0.4200 0
0.3691 0 —0.6900
—0.2947  0.1176 0.3536
—0.0332 0.1058 —0.0988
|—0.1864 —0.1845 0.2178 |

Given Rank(W,) = 3, it indicates the system is observable
for the specified input and output.



C. State Estimation

Consider a system described by equations that track how its
state and outputs change over time:

d
o _ Ax + Bu,

— Cu
di y==re

This system is observable, meaning its internal state can
be deduced from its outputs. To estimate this state (), an
additional system is created, the observer:

&
j§:A£+Bu+L@—C@
Here, & represents the estimated state, and L = [l [, l¢]"

is the matrix determining how much importance to assign to
the difference between the actual output (y) and the estimated
output (C'%).

The difference between the real state (x) and the estimated
state (z) is termed the observer error (¢ = x — ). The
dynamics of this error are given by:

é=i—2=(A-LC)e

Here, A, = (A — LC) represents the dynamics of the error.

To calculate the matrix L, MATLAB’s place () function
is employed, allowing the selection of appropriate values to
stabilize the system. In this case, the chosen values (p =
[-2,—3 + 1.54,—3 — 1.54]) aim to stabilize the observer.
Utilizing the provided system matrices (A, B, and A), the
estimator gain matrix is found to be:

7.0486
—0.0105
0.0069

L=

This matrix helps in adjusting the estimated state based on the
differences between actual and estimated outputs, enhancing
the accuracy of state estimation.

D. Complete Output-feedback Controller

Combining the controller and estimator, the closed loop
dynamics can be defined as

z = A% + Br
j= 0%
where & = [W, S, T, Werror, Serrors Terror] - for this system.

Analysis of the system yields the following matrices:

i A - BK BK
o A-LC

~ BK,

5=

c=[C 0

which combined with the dynamics equations creates

g [z A—-BK BK T BK,
a = + r
e 0 A-LC| e 0

E. Simulate Output-feedback Controller

This section explores combining various Luenberger esti-
mators and errors to analyze how the system behaves under
various conditions. To simulate the behavior of the system and
estimate its states, we generated multi-channel input signals
(ul, u2, u3l) for the system and added Gaussian noise to the
output signal (y). Using the modified system shown in the
previous section for state estimation by adjusting the system
matrices using the observer gain matrix (L) using different
desired eigenvalues p. We simulated the state estimation using
the modified system with the noisy output signal and input
signals. A good estimator will show as close as possible
behaviour to the actual output.

This process facilitates the understanding of the system’s
behavior and the estimation of its states using the observer-
based approach.

F. State Estimation using Luenberger Observer

In the following case studies, the Luenberger estimator’s
performance is observed by altering the eigenvalues (p1, p2,
and p3) while maintaining the same error values.

Case 1 - Luenberger Estimator with p;: For the initial case
study, the eigenvalues (p;) were set as:

)
—4 + 51
—4 -5

pP1=

Figure 14 demonstrates the system’s behavior using p; for
estimation.

State x1 and Estil x1

Acwal x|
— — — -Esfimated x1

Time
State x2 and Esti x2

Time
State x3 and Esti x3

Time

Fig. 14: System behavior with p;

Case 2 - Luenberger Estimator with p,: In the second
scenario, the Luenberger estimator was adjusted with different
eigenvalues (ps):

-5
po= | —4+0.05
—4—0.05i

Figure 15 illustrates the system’s behavior using py for
estimation.



State x1 and Estil x1
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Time
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Fig. 15: System behavior with po

Case 3 - Luenberger Estimator with ps: Finally, exploring
another scenario, the Luenberger estimator was configured
with yet another set of eigenvalues (ps):

-1
ps = | —4+0.05i
—4—0.05i

Figure 16 showcases the system’s behavior using ps for
estimation.

State x1 and Estil x1

Time
State x2 and Estil x2
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Time
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o 02 P = — — -Eslimated x3

Fig. 16: System behavior with ps
Observation and Analysis

By altering the eigenvalues (p) while maintaining consistent
error values, we observed changes in the Luenberger esti-
mator’s performance. The estimations generated from these
variations were compared with the actual system behavior.
The investigation aims to determine the impact of different
eigenvalues on the accuracy of state estimation.

We found that ps was the best performing however we also
noted that xo the Salmon is sensitive to noise. Hence our
observer matrix is:

418 0.19 0.36
L=\ —-055 357 0
-0.700 0 0.30

VII. SYSTEM CONTROL DESIGN IN THE FREQUENCY
DOMAIN

This section will explore the system’s performance in the
frequency domain and design an optimal system controller. By

leveraging frequency domain techniques, the team can tailor
a control system to meet specific performance requirements,
ensuring stability, robustness, and optimal steady state behav-
ior.

Topics covered will include transfer functions, frequency
response analysis, Bode plots, Nyquist diagrams, and the
Nyquist stability criterion. Additionally, the section will ex-
plore how these tools facilitate the design of controllers,
enabling the team to achieve desired system performance
across a range of frequencies.

A. Block Diagram

First, the system will be simplified to model a single-
input single-output system (SISO). This system will include
three external signals - reference signal, disturbance, and
measurement noise. Both the single-input and single-output
are chosen to be the population of whitefish. The disturbance
signal represents a removal of whitefish from the population.

The following state-space representation of this new SISO
model comes from the closed-loop controller in Section V-C.
The A matrix represents the state matrix. B is a single column
vector representing the input to the system, which is the
population of whitefish. C represents the system output in
terms of the state space variables. D is the direct transmission
matrix, which is set to zero here.

-3 —15 0
A= |15 =30 0
L0 0 =20
[0.2667
B=0.133
L 0
C=1[1 0 0 0
D=0

The block diagram for this simplified system is shown in
figure 17.

%ﬁ}— e i " y
[ N

[ n

Fig. 17: Block diagram of the single-input single-output system

The Plant transfer function P(s) is calculated using
P(s)=C(sI —A)~'B

and it represents the transfer function from w« to y. This gives:

P(s) _ 0.2667s%+2.25%46.6015+6.752
— sT11255+58.552+1355+126.6

This transfer function has four poles and three zeros:

o Poles: —3.0+1.54,—3.0 — 1.5¢, —3.0 + 1.5¢, —3.0 — 1.5¢

e Zeros: —3.0 + 1.54, —3.0 — 1.5¢, —2.2503

All of the above values are negative, so there are no zeros
or poles in the right hand plane (RHP). This indicates that
the system is stable under the current conditions. To further



analyze the system, the Bode plot for P(s) is shown in figure
18. The Bode plot shows infinite gain and phase margins and
overall good stability of the system.

Bode Diagram
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Fig. 18: Bode Plot of Plant transfer function

B. Studying Performance of PID Control

The next step in the control design process is to design
an actual controller for the system. A very common control
design technique is PID control which includes proportional,
integral, and derivative control parameters. In fact, more than
95% of industrial control problems implement a PID controller
to solve them due to its capability to solve a wide range of
control problems [14].

A variety of PID control parameters were tested to observe
their effects on the system, and the results are presented in
the following graphs.

Controller I: The first controller is tuned using the following
parameters:

k, = 10
ki =10
kg =10

These parameters resulted in a controller of the form:

C(s) =10+ 22 + 105

for which the Bode plot and step response are shown in figures
19 and 20.

As seen in the bode plot, the gain margin is infinite and the
phase margin is 120 degrees, indicating robust control.

The step response indicates fairly good tracking behavior.
There is no overshoot, the settling time is 9.2442 seconds,
and the steady state error is 0.00053%.

Controller 2: The second controller is tuned using the
following parameters:

kp=1
k=1
kqg=1

These parameters resulted in a controller of the form:

Bode Diagram
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Fig. 19: Bode Plot for Controller 1
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Fig. 20: Step Response for Controller 1

C(s)=1+1+1s
for which the Bode plot and step response are shown in figures

21 and 22.
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Fig. 21: Bode Plot for Controller 2

10

The Bode plot shows infinite gain margin and a phase mar-
gin over 90 degrees, indicating less robustness than Controller
1.

The step response indicates good tracking behavior. There
is no overshoot, the settling time is 75.8804 seconds, and
the steady state error is 0.0032%. Overall, this controller has
worse performance when compared to Controller 1.



Step Response

Amplitude

. . . . .
0 20 40 60 80 100 120
Time (seconds)

Fig. 22: Step Response for Controller 2

Knowing how higher PID parameter values affects the
system, it’s time to design controllers with varying amounts
of each parameter to find the optimal solution.

Controller 3-5: The next three controllers are tuned using
the following parameters:

kp | ki | kq
Controller 3 10 1 15

Controller 4 | 15 10 1
Controller 5 1 15 10

TABLE III: PID Parameters used for Controllers 3-5
These parameters resulted in a controller of the form:

C(s) =ky + 5 + kgs

for which the Bode plot and step response are shown in figures
23 and 24.
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Fig. 23: Bode Plot for Controllers 3-5
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All three controllers showed infinite gain margins and
phase margins greater than 90 degrees, which indicates robust
control.

The response behavior of each controller is described in the
following table:

Controller 5 demonstrated the shortest settling time and
smallest steady state error. However, it was the only controller
of the three to have nonzero overshoot. Since the controllers

Step Response

Controller 3
Controller 4 | |
Controller 5

Amplitude

. . . . . . . .
0 20 40 60 80 100 120 140 160 180
Time (seconds)

Fig. 24: Step Response for Controllers 3-5

Tracking Overshoot Settling Steady
Behavior Time State
Error
Controller Good 0 99.20 s 0.0018%
3
Controller Good 0 11.04 0.0020%
4
Controller Good 1.995 3.6776 0.0007%
5

TABLE IV: PID Parameters used for Controllers 3-5

showed relatively similar behavior, it was decided to look
at each parameter individually to determine if only one
parameter was necessary for robust control.

Controller 6-8: The next three controllers are tuned using
the following parameters:

kp | ki | ka
Controller 6 10 0 0

Controller 7 0 10
Controller 8 0 0 10

TABLE V: PID Parameters used for Controllers 6-8

These parameters resulted in a controller of the form:

O(s) = ky + & + kys

for which the Bode plot and step response are shown in figures
25 and 26.

All three controllers showed infinite gain margins. Con-
troller 6 demonstrated infinite gain margin, controller 7 had
a phase margin of 87 degrees, and controller 8 had a phase
margin of —104 degrees.

Controller 7 (integral control) demonstrated the most robust
behavior with no overshoot, a steady state error of 0.0032%,
and a settling time of 7.1252 seconds.

C. Designing a Feedback Control that Follows Specifications

The success of a controller is determined by predetermined
benchmarks. Here, three benchmarks were determined as
follows:
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Fig. 25: Bode Plot for Controllers 3-5
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Fig. 26: Step Response for Controllers 3-5

« Steady-state error less than 1%, such that |1++(S)| < 0.01
at s = 0 where L(s) = P(s)C(s) and C(s) is the
controller

o Tracking error less than 25% from 0 to 1 rad/s, such that
|1++(§)| < 0.25 during this range of frequencies

o Phase margin of at least 30°

Using MATLAB’s Control System Designer, the following

PI controller was designed to fit the required parameters:
C(s) = 44.309(ss+3‘864)

The system already had a mostly favorable step response,
but the steady-state value was below 1. The proportional
controller was added to satisfy the tracking error requirement
and the integral controller was added to decrease the steady-
state error in the system.

Figure 27 plots the step response of the SISO system under
this controller.

The bode plot indicates that the required specifications have
been met. The 2% steady state error corresponds to minimum
34 dB initial magnitude, which is below the true initial value.
The 10% tracking error corresponds to 20 dB, meaning that
the magnitude of the plot must remain above 20 dB for times
between O and 1 second. This is certainly met. Lastly, the
phase margin is 90 deg and the gain margin is infinite, which
infers robust control.

Next, the closed loop control is analyzed. Closed loop
control follows the transfer function below.
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Fig. 27: Bode Plot for PI Controller

Gry = H% where L = PC
The following bode and step responses (figures 28 and 29)

are developed for this closed loop transfer function.
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Fig. 28: Bode Plot for Closed-Loop PI Controller
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Fig. 29: Step Response for Closed-Loop PI Controller

The bode diagram demonstrates infinite gain margin for the
closed-loop transfer function. The closed-loop step response
is very smooth, with an overshoot of 0, a steady state error of
0.0002%, a rise time of 0.1914 seconds, and a 0.8394 second
settling time. This controller is very responsive and robust.

D. Closed-Loop Disturbance Analysis

Now that a controller has been designed to satisfy the given
specifications, we can then analyze how it behaves when a
disturbance is introduced to the system.



The closed-loop transfer function between the disturbance
and output was calculated using the following equation
_ _P
Gdy — 1+L

The fully calculated transfer function is shown below in figure
30.

G_dy =

0.2667 578 + 5.401 s*7 + 48.61 s°6 + 250.7 s°5 + 798 54 + 1565 s°3 + 1747 s°2 + 854.5 s

579 + 35.82 578 + 546 "7 + 4752 5”6 + 2.635e04 $°5 + 9.711e04 54 + 2.39e05 s"3 + 3.795e05 s°2 + 3.53e05 s

+ 1.463e05

Fig. 30: G4y Transfer Function
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Fig. 31: Bode Plot of G4, Transfer Function

As seen in the response of the system to low frequency,
the system is most sensitive to disturbances in the range of
10’1% to 10%‘1. Given that we want G4y to be small at
large frequencies, our current model satisfies this and shows
a good response to disturbance.

For such a control system, an ecosystem should be robust
to disturbances including weather, human-induced pressure,
and other natural factors. An ideal controlled system such as
this would be able to encounter external disturbances without
becoming unstable.

The effect of a disturbance on the system was further
analyzed by simulating three different values of frequency (w)
for a disturbance of the form d(t) = sin(wt). The MATLAB
function #f2ss was used to get the [A,B,C,D] matrix for the
transfer function Gg,, and then Isim was used to simulate the
disturbance response.

w=0.5rad/s

The system’s response is very minimally impacted by
external response as shown in figure 32. A low frequency
input disturbance signal translates to a low frequency, low
amplitude response.

w = brad/s

The system’s response is very minimally impacted by
external response as shown in figure 33. A low frequency
input disturbance signal translates to a low frequency, low
amplitude response. Compared to the previous simulation
(w = 0.5rad/s), the system response demonstrates more
oscillatory behavior that is in phase with the disturbance
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Fig. 32: Linear Simulation of a Sinusoidal Disturbance Signal with
w=0.5
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Fig. 34: Linear Simulation of a Sinusoidal Disturbance Signal with
w =50

As shown in the previous three plots, our controller is very
robust and not sensitive to sinusoidal external disturbance.

E. Closed-Loop Noise Analysis

The system’s response to noise was then analyzed using a
Gaussian noise input signal. The closed-loop transfer function



from the noise signal to the output signal was calculated using
the following equation.

_ —L
Gny — 14+L

Using the open-loop transfer function L(s), Gy, is computed
to be:

Gy =

-11.82 579 - 285 5°8 - 3078 57 - 1,943e04 s°6 - 7.828e04 ™5 - 2.06€05 54 - 3.453e05 5”3 - 3.37e05 s°2 - 1.463e05 s

5710 + 35.82 S"9 + 546 $°B + 4752 S°7 + 2.635e04 $°6 + 9.711e04 s*5 + 2.39e05 s~4 + 3.795€05 s"3 + 3.53e05 s*2 + 1.463e05 s

Fig. 35: Transfer function Gy

To simulate the system’s sensitivity to noise, two plots
were created. The first was the Bode plot for the transfer
function G, shown in figure 36. The second plot was a linear
simulation using MATLAB’s Isim function with a Gaussian
noise signal. The Gaussian signal was created by generating a
random set of values between O and 1 for a duration of 1000
seconds. The system was then plotted in figure 37 over this
time range and compared to the input noise signal for five
trials.
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Fig. 36: Bode plot for Gy

Linear Simulation Results
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Fig. 37: Linear Simulation of a Gaussian Noise Signal

The system responds well to a noise signal since the
amplitude of the responses is very minimal compared to the
amplitude of the noise signal. However, the system has a more
robust response to disturbance signals when compared to noise
signals.

VIII. DISCUSSION AND CONCLUSION

Our three species predator-prey-invasive species model, re-
vealed a stable ecosystem with 3,075,198 whitefish, 1,033267

salmon, and 1,644,874 lake trout without control input. Vari-
ous PID control conditions were implemented to help develop
harvest quotas for biologists responsible for maintaining de-
sired ecosystem dynamics. A PI controller was sufficient to
satisfy the specifications minimizing steady state and tracking
errors and maximizing phase margin while being robust to
noise and disturbance. Ecosystems must be able to absorb
disturbances without collapsing. The objective of our study
was to help develop quotas or standards for fish harvesting in
a simplified ecosystem model.

The controller developed herein can be used as a framework
on which to develop fish harvesting regulations. To that end,
our results must be translated to metrics that fish and wildlife
management agencies can implement. Future developments
would do just that-depending on the specific goals of each
agency. The process for doing this adheres to the following
basic outline. First, the harvest quotas and desired species
populations must be established. Then, a mapping function
must be established to translate the PID output to those
desired harvest parameters. Here, our controller is already
in the desired units: harvest, so only the magnitude must be
manipulated.

Lastly, given the continuous-signal implementation of the
PID controllers developed in this report and the uncertainty in
species population metrics, our controller is not an ideal repre-
sentation of true, actionable management practices. Measuring
species populations is a cumbersome, time-consuming process
involving multiple simplifications. It is unreasonable to assume
that accurate, real-time measurements on population sizes and
distributions can be made for large ecosystems. In reality,
fish populations are measured through mark and recapture
studies, electrofishing and fish netting, and field surveys, which
periodically inform updates on fish populations. This explains
why our PID response is much quicker than expected in
reality. It follows a time scale of seconds, where days or even
months are more realistic. Future control models will comply
with the population measurement capabilities of the agencies
implementing them, as well as their budget and other such
factors.

IX. ACKNOWLEDGEMENTS
We would like to thank Professor Na Li and the rest of the
teaching staff: Yuyang Zhang, Haitong Ma, Arjun Batra, and
Melinda Modisette for their feedback and advice throughout
the semester on this project.



APPENDIX A
NONLINEAR SYSTEM DYNAMICS EXPLORATION

For the entirety of our closed-loop system dynamics ex-
ploration previously discussed in this report we used our
LTI system as our model. However, our original system
was nonlinear and does not have the same behavior as our
linearized model. To explore the nonlinear system dynamics,
we used the feedback controller designed in Section V-C. As a
reminder, the feedback controller was designed with the gain

matrix (K):
—3.1768 -1 0.7
1.36565 —2.59 0
—0.3691 0 —1.31

Using ode45 in MATLAB, a time domain simulation was
conducted and the results are plotted in figure 38.

Nonlinear Time Simulation
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Fig. 38: Nonlinear Time Domain Simulation

This controller indeed stabilizes the system. However, the
stabilization is not ideal since all of the fish populations go to
Zero.
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